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In this paper, we develop an efficient procedure to solve for the Stokesian fields
around a spherical particle in viscous fluid bounded by a cylindrical confinement.
We use our method to comprehensively simulate the general creeping flow involving
the particle-conduit system. The calculations are based on the expansion of a vector
field in terms of basis functions with separable form. The separable form can be
applied to obtain general reflection relations for a vector field at simple surfaces. Such
reflection relations enable us to solve the flow equation with specified conditions at
different disconnected bodies like the sphere and the cylinder. The main focus of this
article is to provide a complete description of the dynamics of a spherical particle
in a cylindrical vessel. For this purpose, we consider the motion of a sphere in both
quiescent fluid and pressure-driven parabolic flow. Firstly, we determine the force and
torque on a translating-rotating particle in quiescent fluid in terms of general friction
coefficients. Then we assume an impending parabolic flow, and calculate the force and
torque on a fixed sphere as well as the linear and angular velocities of a freely moving
particle. The results are presented for different radial positions of the particle and
different ratios between the sphere and the cylinder radius. Because of the generality
of the procedure, there is no restriction in relative dimensions, particle positions and
directions of motion. For the limiting cases of geometric parameters, our results agree
with the ones obtained by past researchers using different asymptotic methods.
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1. Introduction
Transport of particulate complex fluids through a cylinder is a common

phenomenon in biological and industrial systems. Examples include blood flow in
blood vessels of living organisms or flow of suspensions through microconduits in
microfluidic devices. It is common in fluid-mechanical models to assume the suspended
particles as spheres. Hence, for biological and microfluidic applications, it is necessary
to analyse the hydrodynamic interactions between a spherical particle and a confining
cylindrical surface.

In the past, several theoretical investigations have addressed classical flow
problems involving creeping motion of a sphere inside a cylinder. Earlier researchers
predominantly focused on axial movement of the sphere. Their theories are primarily
based on various approximate perturbative schemes which are only valid for different
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limiting cases (Cox & Mason 1971). These studies can be classified into three categories
accordingly.

The first of these approximate techniques is referred as the method of reflection
(Brenner & Happel 1958; Cox & Brenner 1967; Greenstein & Happel 1968; Brenner
1970; Greenstein & Happel 1970). In this method, one initially calculates the scattered
flow from the sphere in free space with no cylindrical confinement. A correction field
is then subtracted to nullify the non-zero velocity at the cylinder surface in the initial
approximation. This ensures the satisfaction of the no-slip condition at the conduit,
but creates an error in the boundary condition at the sphere surface. Hence, several
similar iterations are subsequently performed for improvement which is only possible
when distance between the particle centre and the cylinder is much larger than the
sphere radius. Other equivalent regular perturbation schemes (Tozeren 1982, 1983)
also have similar restrictions.

When distance between the particle centre and the conduit surface is comparable
to the particle radius, the method of reflection cannot be used. Then, in the limit of
large ratio between the radii of the cylinder and the sphere, one can approximate the
surface of the vessel to be nearly planar (Goldman, Cox & Brenner 1967; O’Neill
& Stewartson 1967; Falade & Brenner 1985). This second scheme, however, is not
applicable when the cylinder radius is comparable to the cylinder-sphere separation.

Finally, theoretical results are also available for configurations where the particle
is very tightly fitted in the conduit (Bungay & Brenner 1973a ,b). In such cases, one
can use lubrication theory based on singular perturbation technique to calculate the
hydrodynamic friction or mobility of a sphere closely surrounded by a cylindrical
surface.

Neither of the aforementioned analysis is, however, applicable when the sphere
radius, the cylinder radius and the separation between surfaces of the sphere and
the cylinder are comparable. This is why the existing theories are inadequate in
describing various physically interesting phenomena (like cell dynamics in arterioles
or microfluidic transports) where all three defining dimensions of the particle-conduit
system are of the same order. Also, the past studies were mainly focused on axial
motion of the particle. However, in presence of an external field like gravity acting
in the cross-sectional plane of the cylinder, the particle can move in the radial
and azimuthal directions also. To our knowledge, such complete description of the
dynamics in a cylinder-sphere system is still not available. Hence, a more general
formulation is required to understand particle dynamics both in arbitrary geometry
and under the influence of arbitrary forces.

The issue of generality can be addressed by several numerical techniques like
boundary integral (Queguiner & BarthesBiesel 1997; Pozrikidis 2005), spectral
boundary element (Higdon & Muldowney 1995), finite element (Lunsmann et al. 1993;
SugiharaSeki 1996; SugiharaSeki & Skalak 1997; Chiu et al. 1998) and molecular
dynamics (Sushko & Cieplak 2001; Drazer et al. 2005) simulations. However, these
well-known methods require a considerable computational cost. Thus, a more efficient
algorithm is desirable to study colloidal systems in confinements especially if we want
to extend the methodology to explain many-particle interactions.

In this paper, we present a semi-analytical procedure which can be efficiently
implemented to solve general creeping flow problems involving spherical particles
in cylindrical conduits. Our primary focus is to determine the hydrodynamic
interactions between a single-spherical particle and a single-confining cylinder though
the technique is general enough to be easily extended to multiparticle systems and
annular geometries.
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Our solution technique has similarities with Stokesian dynamics simulations (often
referred as multipolar expansion) which utilize the solution of Stokes equation
in spherical coordinates to solve multiparticle interactions in unbounded space
(Durlofsky, Brady & Bossis 1987; Ladd 1988; Felderhof & Jones 1989; Sierou & Brady
2001). The method was extended to analyse colloidal systems in wall-bounded slit
pore by combining boundary integral and the spherical solutions (Durlofsky & Brady
1989). The same problem is also approximately solved by modelling the bounding
planar walls as closely packed arrays of static spheres so that the free-space many-
sphere computation can simply be extended without any further complexity (Nott &
Brady 1994; Morris & Brady 1998). More accurate results can be obtained with even
less cost, if the spherical solutions are applied in conjunction with proper reflection
relations for a single planar wall (Cichocki & Jones 1998; Cichocki et al. 2000) or two
such walls (Bhattacharya & B�lawzdziewicz 2002). Recently, the efficiency has been
further increased by devising a scheme which analyses many-sphere problem between
two planes by using two sets of Stokesian solutions (Bhattacharya, B�lawzdziewicz
& Wajnryb 2005a ,b, 2006a ,b; Bhattacharya 2008a). Moreover, similar analysis is
applied to unsteady flow between plannar walls (Bhattacharya 2008b), and steady
axisymmetric systems (Wang & Skalak 1969). Applicability of this efficient algorithm
is, however, restricted to planar wall or axisymmetric geometries due to its crucial
dependence on translational or rotational symmetries which are not a necessity for
the general formulation outlined in this paper.

The presented method is based on the basis function expansion of a vector field
governed by a second-order linear differential equation. For our particular problem,
the vector field is the flow field and the second-order governing equation is the
Stokes equation. Accordingly, we find complete sets of separable basis solutions
for the Stokes equation in cylindrical and spherical coordinates which correspond
to the conduit and the particle surface, respectively. The separable solutions are
used to find general reflection relations at the respective surfaces so that any
prescribed field at the interfaces can be described appropriately. For simultaneous
satisfaction of the boundary conditions at both spherical and cylindrical surfaces,
proper transformation relations between spherical and cylindrical basis solutions are
derived. These transformation relations along with the reflection relations are used to
obtain necessary results for arbitrary geometric configurations.

This paper is organized in the following manner. In § 2, we describe how we
satisfy boundary conditions at disconnected simple surfaces by using separable
basis solutions and general reflection relations. In § 3, we solve Stokes equation
in the presence of a sphere inside a cylinder by following the outlined procedure.
Numerical implementation and convergence tests are presented in § 4. In § 5, we apply
our algorithm to find hydrodynamic friction coefficients of the particle translating
and rotating in quiescent fluid for arbitrary geometric configurations and arbitrary
direction of motion. In the limiting cases, we compare our results with existing data
to validate our analysis by showing the relative error to be less than 1 %. In § 6, we
consider the particle to be in a pressure-driven parabolic flow, and determine the
hydrodynamic friction when it is fixed as well as the hydrodynamic mobility when it
is freely moving. Finally, the conclusions are drawn in § 7.

2. Basis transformation method
In this section, we present an outline of the general mathematical procedure

(referred as basis transformation method) that is used in our analysis. The key
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Figure 1. The conduit and particle coordinates.

features of this method are similar to simple separation of variables used for solving
a linear partial differential equation apart from two crucial differences. Firstly, in
our problem the boundary conditions are specified at different kinds of disconnected
surfaces (the conduit and the particle). Secondly, these conditions specify a vectorial
field (velocity) instead of a scalar which is generally the dependent variable in the
separation of variable.

2.1. Geometry and coordinate systems

In the analysis, we assign two different coordinate systems for the conduit and the
particle assuming simple enough geometries for both. For a general confinement and a
general particle these coordinates are denoted by (α, β , γ ) and (α1, β1, γ1), respectively.
Accordingly, the conduit and the particle are described by α-constant and α1-constant
surfaces. For the particle–fluid interface, we consider α1 = a1. If the confined domain
is bounded by a single surface (as in one-wall or cylindrical geometries), we assume
the surface is represented by α = a. In contrast, if two isolated boundaries are present
(as in two-wall or annular geometries), we define the additional surface by α = a′

with a′ < a. Though our method can be applied for annular and two-wall geometries,
at present, we only concentrate on a single-surface conduit which is the case for a
cylindrical vessel.

Hence, in our specific problem, (α, β , γ ) are the cylindrical coordinates (ρ, β , z)
with z axis coinciding with the conduit axis whereas (α1, β1, γ1) are the spherical
coordinates (r , θ , φ) with origin at the particle centre. So, according to our notation,
the conduit radius is a and the particle radius is a1. The specific geometry and
coordinates are schematically described in figure 1. It is to be noted that this general
procedure also works for other geometries. For example, the conduit coordinates
would be Cartesian if the confinement is a planar wall, or the particle coordinate will
be spheroidal if the particle is a spheroid.

2.2. Complete set of separable basis solutions

Once the coordinates are assigned, we focus on the expression of general vectorially
separable basis solutions for the governing equation in both (α, β , γ ) and (α1, β1,
γ1) coordinate systems. As the governing equation is of second order, we need two
independent solutions for each system to properly solve the vector field. Accordingly,
the separable basis solutions for the conduit and the particle coordinates are denoted
as v±

λμσ and v1±
lmσ , respectively. The superscripts + and − represent two different kinds

of solutions.
At this point, we provide a detailed description of the subscripts in v±

λμσ and
v1±

lmσ to clarify their meaning. The indices l and m are required to construct a
complete set in scalar functional space for the particle coordinates. These are generally
discrete numbers like the indices of spherical or spheroidal harmonics in spherical
or spheroidal coordinates. Similarly, λ and μ are indices associated with the scalar
functional space in (α, β , γ ) system. These indices can be either discrete or continuous
depending on the confinements. For Stokesian fields near planar walls, λ and μ are the
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x and y components of continuous wave vectors whereas for cylindrical geometries
λ is the magnitude of continuous wave vector and μ is a discrete number associated
with azimuthal dependence as exp(iμβ). The other index σ = 0, 1, 2 indicates three
independent solutions that complete the set of vectorial basis functions in three-
dimensional space.

In order to satisfy arbitrary linear non-homogeneous boundary conditions at the
particle and the conduit surface, v±

λμσ and v1±
lmσ have to be in the following form:

v±
λμσ = S(α, β, γ ) ·

∑
s=0,1,2

eλμs(α, β, γ )f ±
λμsσ (α) (2.1)

and

v1±
lmσ = S1(α1, β1, γ1) ·

∑
s=0,1,2

e1
lms(α1, β1, γ1)f

1±
lmsσ (α1). (2.2)

The index-independent second-order invertible tensorial function S or S1 are identity
tensor for the present problem. The index-dependent single-variable scalar functions
f

±
λμsσ s or f

1±
lmsσ s in (2.1) and (2.2) are to be determined for particular governing

equations and coordinate systems. We also impose additional finiteness criteria so
that for finite α and α1 (i) f +

λμsσ is finite for α < ∞, (ii) f −
λμsσ is finite for α > 0,

(iii) f 1+
lmsσ is finite for α1 < ∞ and (iv) f 1−

lmsσ is finite for α1 > 0.
The vectors eλμs or e1

lms form a complete set of orthogonal fields in terms of which
any vector function can be expanded at α- or α1-constant surface, respectively:∫

e∗
λμs · eλ′μ′s′ dβ dγ = δλλ′δμμ′δss′ (2.3)

and ∫
e1∗

lms · e1
l′m′s′ dβ1 dγ1 = δll′δmm′δss′, (2.4)

where the superscript ∗ denotes complex conjugate and δ is either the Kronecker
delta or the Dirac delta function depending on whether the subscripts are discrete or
continuous.

The presented method can be applied only when the governing equations and
the geometries are such that the vector basis functions can be expressed by (2.1)–
(2.4). Fortunately, for common equations like steady or periodically transient Stokes
equation and for simple geometries like spherical particle, cylindrical conduit or
planar wall, such basis functions can be constructed. In all of these cases, the general
solution for the vector field v can be expressed as a linear combination of either v±

λμσ :

v =
∑
λμσ

(v+
λμσb+

λμσ + v−
λμσb−

λμσ ) (2.5)

or v1±
lmσ :

v =
∑
lmσ

(
v1+

lmσ c+
lmσ + v1−

lmσ c−
lmσ

)
, (2.6)

where b
±
λμσ and c

±
lmσ are scalar amplitudes, and

∑
implies discrete summation for

discrete indices and integral for continuous indices. In this analysis, the vector field v

is solved by obtaining the unknown coefficients c+
lmσ and c−

lmσ .
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2.3. General reflection relations at the particle and the conduit surface

In the next step, we consider an inhomogeneous boundary condition at the particle
surface. We only consider Dirichlet conditions though other linear conditions can also
be analysed by this general technique. Accordingly, we assume that the vector field v

at α1 = a1 is V (β1, γ1) which is a function of β1 and γ1. We can express V (β1, γ1) in
two different ways. Firstly, considering S1 to be identity tensor and set of orthogonal
vector functions e1

lms to be complete, one can write V (β1, γ1) as a linear combination:

V (β1, γ1) =
∑
lms

e1
lmsalms, (2.7)

where alms ’s are the amplitudes. Secondly, V (β1, γ1) can also be obtained from the
vector field v in (2.6). By combining (2.2) and (2.6), and by setting α1 = a1, we
determine

V (β1, γ1) =
∑
lmsσ

e1
lms

[
f 1+

lmsσ (a1)c
+
lmσ + f 1−

lmsσ (a1)c
−
lmσ

]
. (2.8)

Hence, by comparing (2.7) and (2.8), one can find a relation between alms , c+
lmσ and

c−
lmσ : ∑

σ

[
f 1−

lmsσ (a1)c
−
lmσ + f 1+

lmsσ (a1)c
+
lmσ

]
= alms. (2.9)

For a given inhomogeneous Dirichlet condition at the particle–fluid interface, alms

is known. As a result, (2.9) serves as one of the constraint equations required for
determination of the unknown coefficients c−

lmσ and c+
lmσ .

Apart from (2.9), an additional equation is necessary for evaluation of c−
lmσ and c+

lmσ .
This equation is derived from the boundary condition at the conduit where v = 0 for
any V (β1, γ1). To this end, we find two sets of transformation relations between the
basis solutions of the particle and the conduit coordinates. For simplicity, we assume
only the case where the particle is inside the conduit so that the domain is defined
by α < a and α1 > a1. In this situation, the finiteness criteria for f

±
λμsσ and f

1±
lmsσ

ensure the existence of two transformation relations for given relative position vector
R between the particle and the conduit centres. These transformations are

v1−
lmσ (r) =

∑
λμσ ′

v−
λμσ ′(r) Tf (λμσ ′, lmσ | R), (2.10)

as long as αR (the value of α associated with R) is smaller than α (related to r), and

v+
λμσ (r) =

∑
lmσ ′

v1+
lmσ ′(r) Tr (R | lmσ ′, λμσ ), (2.11)

where Tf and Tr are the transformation coefficients. By substituting (2.10) in (2.6)
and (2.11) in (2.5) and comparing, we determine

b−
λμσ =

∑
lmσ ′

Tf (λμσ, lmσ ′ | R)c−
lmσ ′ (2.12)

and

c+
lmσ =

∑
λμσ ′

Tr (R | lmσ, λμσ ′)b+
λμσ ′ . (2.13)

Again substituting (2.12) in (2.5) and considering no slip at the conduit, one obtains

v | α=a = 0 =
∑
λμsσ

eλμs

[
f +
λμsσ (a)b+

λμσ + f −
λμsσ (a)

∑
lmσ ′

Tf (λμσ, lmσ ′ | R)c−
lmσ ′

]
. (2.14)
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Hence setting the square bracketed term in (2.14) as zero and using (2.13), we can
derive the additional relation between c+

lmσ and c−
lmσ .

This second relation between c+
lmσ and c−

lmσ can be simplified in terms of the
reflection coefficients which ensure the satisfaction of the no-slip boundary condition
at the conduit surface. By combining (2.13) and (2.14), one finds

c+
lmσ =−

∑
l′m′σ ′

∑
λμσ1σ2

Tr (R | lmσ, λμσ1) Rc(λμσ1σ2; a) Tf (λμσ2, l
′m′σ ′ | R) c−

l′m′σ ′ . (2.15)

The conduit reflection coefficients Rc can be determined if f
±
λμsσ s are known

Rc(λμσ1σ2; a) =
∑

s=0,1,2

g+
λμσ1s

(a)f −
λμsσ2

(a), (2.16)

where the scalar function g+
λμσ1s

(a) is such that the following relation can be satisfied∑
s=0,1,2

g+
λμσ1s

(a)f +
λμsσ2

(a) = δσ1σ2
. (2.17)

The existence of g+
λμσ1s

is assured because of the linear independence of v+
λμ0, v+

λμ1,

v+
λμ2.

Finally, (2.9) and (2.15) are combined to calculate the unknown coefficients c+
lmσ

and c−
lmσ so that the Dirichlet boundary condition at both particle and confinement

can be satisfied simultaneously. One can eliminate c+
lmσ from these equations by

using a second type of reflection coefficient Rp which is associated with the particle.
Accordingly, after substituting c+

lmσ as per (2.15) in (2.9) and defining reflection
coefficient Rp properly, we find

dlmσ =
∑

s

g1+
lmσs(a1)alms =

∑
σ ′′

Rp(lmσσ ′′; a1)c
−
lmσ ′′

−
∑
l′m′σ ′

∑
λμσ1σ2

Tr (R | lmσ, λμσ1)Rc(λμσ1σ2; a)Tf (λμσ2, l
′m′σ ′ | R)c−

l′m′σ ′, (2.18)

where Rp can be expressed in terms of f
1±
lmσ . The relation between Rp and f

1±
lmσ is

similar to the relation between Rc and f
±
λμsσ :

Rp(lmσσ ′; a1) =
∑

s=0,1,2

g1+
lmσs(a1)f

1−
lmsσ ′(a1), (2.19)

where ∑
s=0,1,2

g1+
lmσs(a1)f

1+
lmsσ ′(a1) = δσσ ′ . (2.20)

Hence, for a given boundary condition at the particle where dlmσ is known, we first
solve (2.18) and then use (2.15) for the complete solution.

In spite of apparent mathematical complexity, the key elements of the method
are simple. Firstly, we determine two sets of separable basis solutions and use the
four indexed scalar functions to construct the coefficients for particle reflection Rp

and confinement reflection Rc. Then two types of transformation coefficients denoted
by Tf and Tr are evaluated. Finally, we solve the vector field v by calculating the
amplitudes c−

lmσ and c+
lmσ from (2.18) and (2.15), respectively. In order to keep the

analysis simple, in this paper we specifically assume that (i) boundary conditions
are Dirichlet, (ii) a single surface forms the confinement, (iii) the particle is inside the
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vessel and (iv) only a single particle is present in the system. Fortunately, with minor
modifications, the technique can also be applied to a far more general scenario where
all these assumptions are relaxed.

3. General Stokesian solution for flow around a sphere in a cylinder
To analyse creeping motion of a spherical particle inside a cylindrical vessel, we

treat Stokes equation as the second-order vector equation mentioned in § 2:

η∇2v = ∇p ∇ · v = 0. (3.1)

Here, η is viscosity, v is velocity-field and p is pressure. The Dirichlet conditions are
specified at the surfaces of the sphere and the cylinder where v is known.

In the analysis, the particle coordinate system (α1, β1, γ1) is denoted by spherical
coordinates (r, θ, φ) whereas conduit coordinate system (α, β, γ ) is represented by
cylindrical coordinates (ρ, β, z). Following the outlined procedure, we find separable
basis velocities for Stokes equation in cylindrical and spherical coordinates according
to (2.1) and (2.2), and calculate Rc and Rp . Then, we show how to derive corresponding
Tf and Tr .

The analysis can be drastically simplified if one takes advantage of two well-known
symmetries. In the next two subsections, we show how to use these two symmetries.

3.1. The recurrence curl relation between the basis solutions of Stokes equation

Using vector identities, the Stokes equation (3.1) can be rewritten in an equivalent
form

∇ × ∇ × ∇ × v = 0. (3.2)

From the recurrence of the operator ∇× in (3.2), one can draw the following
conclusion about the solutions of Stokes equation: if one finds a solution vprs for
which ∇ × ∇ × vprs is non-trivial, then vvor = q∇ × vprs and vpot = q∇ × vvor (with q

being a constant) are also two independent solutions. This recurrence symmetry of
Stokesian fields is well known (Bhattacharya et al. 2005a ,b) and vprs , vvor , vpot are
similar to the pressure, vorticity and potential solutions described in (Lamb 1945).
This recurrence symmetry has a twofold advantage.

Firstly, due to the recurrence relation, the construction of the basis solutions
becomes easier – we do not need to derive individually all three solutions
corresponding to σ = 0, 1, 2. We obtain only that one which gives non-trivial field
when operated on twice by the Curl operator and assign one value of σ for the
solution. The other two basis fields corresponding to the other two values of σ are
derived by taking Curl and double Curl of the first solution. Accordingly, we follow
the convention where v+

λμ2, v−
λμ0, v1+

lm2 and v1−
lm0 have non-trivial double Curl and

v−
λμ1 = q−∇ × v−

λμ0, v−
λμ2 = q−∇ × v−

λμ1, (3.3)

v+
λμ1 = q+∇ × v+

λμ2, v+
λμ0 = q+∇ × v+

λμ1, (3.4)

v1−
lm1 = q−

1 ∇ × v1−
lm0, v1−

lm2 = q−
1 ∇ × v1−

lm1, (3.5)

v1+
lm1 = q+

1 ∇ × v1+
lm2, v1+

lm0 = q+
1 ∇ × v1+

lm1, (3.6)

where q±, q
±
1 are four constants which are chosen as per convenience. Among the

solutions defined in (3.3)–(3.6), the ones with σ = 1 are solenoidal harmonic vector
fields whereas remaining solutions (v−

λμ2, v+
λμ0, v1−

lm2, v1+
lm0) are potential fields.
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The second benefit of the recurrence relation is simplification of the derivation of
Tf and Tr . By taking Curl and double Curl of (2.10) and using (3.3) and (3.5), we find

Tf (λμσ ′ + j, lmσ + j ) = (q−
1 /q−)j Tf (λμσ ′, lmσ ) for j < 2 − max(σ ′, σ ) (3.7)

and

Tf (λμσ ′, lmσ ) = 0 for σ ′ < σ, (3.8)

where ‘max’ means the maximum of the arguments, and R is omitted for notational
simplicity. Hence, Tf for all σ and σ ′ can be defined by only three coefficients instead
of nine – we determine Tf (λμ0, lm0), Tf (λμ1, lm0), Tf (λμ2, lm0) in terms of which
the remaining non-zero coefficients can be expressed. Similarly, we can also simplify
Tr by taking Curl and double Curl of (2.11) and using (3.4) and (3.6):

Tr (lmσ + j, λμσ ′ + j ) = (q+
1 /q+)j Tr (lmσ, λμσ ′) for j < 2 − max(σ ′, σ ) (3.9)

and

Tr (lmσ, λμσ ′) = 0 for σ ′ < σ. (3.10)

For these coefficients, we evaluate only Tr (lm0, λμ2), Tr (lm1, λμ2), Tr (lm2, λμ2), and
utilize (3.9) to find other non-zero coefficients for different σ and σ ′.

3.2. Normalization by Oseen tensor

In the previous subsection, it is shown that if somehow we can derive the expressions
for Stokesian solutions with non-trivial double Curl (i.e. v+

λμ2, v−
λμ0, v1+

lm2, v1−
lm0), then

we can complete the set of basis fields for different σ very easily. However, there is
no unique way to construct the aforementioned fields because of gauge invariance.
We can always add irrotational or solenoidal-harmonic vector functions to v+

λμ2, v−
λμ0,

v1+
lm2, v1−

lm0 without contradicting their definitions. In this subsection, we use another
symmetry of the Stokesian solutions for unique representation of these basis fields.
In the process, we take advantage of the inherent gauge invariance to simplify the
subsequent analysis.

Among the Stokesian basis, the ones corresponding to a potential field are the only
solutions that are unaffected by the gauge fields. So they can be uniquely defined
(besides normalization constants) as gradients of harmonic scalar fields:

v−
λμ2 = ∇Φ−

λμ, v+
λμ0 = ∇Φ+

λμ, v1−
lm2 = ∇Φ1−

lm , v1+
lm0 = ∇Φ1+

lm , (3.11)

where Φ
±
λμ, Φ

1±
lm are separable solutions for Laplace equation in respective coordinates

Φ−
λμ =

Kμ(λρ)ei(μβ+λz)

A−
λμ

, Φ+
λμ =

Iμ(λρ)ei(μβ+λz)

A+
λμ

, Φ1−
lm =

Ylm(θ, φ)

A1−
lm rl+1

,

Φ1+
lm =

rlYlm(θ, φ)

A1+
lm

.

(3.12)

In (3.12) Kμ and Iμ are two kinds of modified Bessel functions of integer order μ;

Ylm are normalized spherical harmonics, and A
±
λμ, A

1±
lm are scaling constants. We set

A−
λμ = 4π2/A+

λμ, A1−
lm = (2l + 1)/A1+

lm , (3.13)
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so that the properties of Φ
±
λμ, Φ

1±
lm ensure that the Greens function Gr for Laplace

equation can be expressed as below:

Gr (r − r ′) =
1

4π | r − r ′ | =

∫ ∞

−∞

∞∑
μ=−∞

Φ+∗
λμ (r ′)Φ−

λμ(r) dλ =

∞∑
l=1

l∑
m=−l

Φ1+∗
lm (r ′)Φ1−

lm (r),

(3.14)

where r is position of the observation point and r ′ is the position of a source. Two
vectors r and r ′ are such that ρ > ρ ′ and r > r ′ where primed coordinates relate
to r ′.

Using (3.3)–(3.6) and identifying special features of Oseen tensor as described in
Appendix A, we find

T(r − r ′) =
1

8π | r − r ′ | [I − (r − r ′)(r − r ′)/ | r − r ′ | 2], (3.15)

it can be shown that

T(r − r ′) =
∑
λμσ ′

v+∗
λμσ ′(r ′)v−

λμσ ′(r) =
∑
lmσ

v1+∗
lmσ (r ′)v1−

lmσ (r), (3.16)

when q+∗ = q− = q+∗
1 = q−

1 = i and v+
λμ2, v−

λμ0, v1+
lm2, v1−

lm0 are constructed in a unique
way by fixing the gauge fields. We impose the additional constraint described as (3.16)
on v+

λμ2, v−
λμ0, v1+

lm2, v1−
lm0 to render the uniqueness of the basis solutions for chosen

values of A+
λμ and A1+

lm . In Appendix A, we prove (3.16) and justify how it can be used
to determine the gauge dependent Stokesian basis functions.

If (3.16) is used to define the basis solutions, a major simplification can be achieved
in the analysis. By expanding v1−

lmσ (r) in terms of v−
λμσ ′(r) as in (2.10) and v+∗

λμσ ′(r ′) in

terms of v1+∗
lmσ (r ′) as in (2.11) for the same conduit-particle configuration (i.e. for same

R), and equating the two summation series of outer products in (3.16), we get∑
λμσ ′

∑
lmσ

v1+∗
lmσ (r ′)T ∗

r (R | lmσ, λμσ ′)v−
λμσ ′(r) =

∑
λμσ ′

∑
lmσ

v1+∗
lmσ (r ′)Tf (λμσ ′, lmσ | R)v−

λμσ ′(r).

(3.17)

The above equation is true for all possible r and r ′ as long as ρR < ρ (ρR being
related to R). Such general equality is possible only if

Tf (λμσ ′, lmσ | R) = T ∗
r (R | lmσ, λμσ ′). (3.18)

Such a relation between two types of transformation coefficients is an alternative
version of well known reciprocal theorem. The benefit of (3.18) is that if Tr is
calculated Tf becomes known immediately.

3.3. Basis solutions and transformation coefficients

Finally, in this subsection, we integrate all the elements of the analysis that have
been discussed so far, and present the explicit expressions for each term in our
main equation (2.18). For numerical implementations, these final results are to be
substituted in (2.18) which relates amplitudes c−

lmσ with known coefficients dlmσ . The
motion inducing quantities like force and torque on the sphere as well as pressure
differential in the conduit are described by c−

lmσ . On the other hand, motion inducing
quantities like translational and rotational velocities of the sphere, as well as mean
flow in the channel are defined by dlmσ . Hence, our final explicit relation between
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these two sets of amplitudes helps us to provide comprehensive results involving the
general Stokesian dynamics of the sphere-cylinder system. In spite of the complexity
of the mathematical analysis, one can reproduce such results by using the derived
expressions summarized here and following the outlined numerical procedures in the
subsequent section.

By combining (3.3), (3.4), (3.11)–(3.13), (3.16) and setting A+
λμ = A−

λμ = 2π, q+ =

q−∗ = i, we derive v±
λμσ in the form described by (2.1). Accordingly, we first find

eλμ0 = e− ei(μβ+λz)

2π
, eλμ1 = e+ ei(μβ+λz)

2π
, eλμ2 = ez

ei(μβ+λz)

2π
, (3.19)

where

e− =
ex − iey√

2
eiβ e+ =

ex + iey√
2

e−iβ, (3.20)

with ez being the unit vector along the conduit axis, and ex and ey being mutually
perpendicular unit vectors in a plane perpendicular to z. Then we complete the
description of v±

λμσ by expressing f
±
λμsσ as the (σ +1, s +1)th element of 3 × 3 matrices

F±
λμ:

F+
λμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λIμ+1(λρ)√
2

iIμ+1(λρ)√
2

ρ(Iμ+2(λρ) + Iμ(λρ))

4
√

2

λIμ−1(λρ)√
2

− iIμ−1(λρ)√
2

ρ(Iμ(λρ) + Iμ−2(λρ))

4
√

2

iλIμ(λρ) 0 i
λρIμ+1(λρ) + λρIμ−1(λρ) + 2Iμ(λρ)

4λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

F−
λμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ(Kμ+2(λρ) + Kμ(λρ))

4
√

2

iKμ+1(λρ)√
2

−λKμ+1(λρ)√
2

ρ(Kμ(λρ) + Kμ−2(λρ))

4
√

2
− iKμ−1(λρ)√

2
−λKμ−1(λρ)√

2

−i
λρKμ+1(λρ)+λρKμ−1(λρ) − 2Kμ(λρ)

4λ
0 iλKμ(λρ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.21)

and proving S to be the identity tensor I. The conduit reflection is evaluated using
F±
λμ,

Rc(λμ; a) = [F+
λμ(a)]−1[F−

λμ(a)], (3.22)

where the (σ1 + 1, σ2 + 1)th element of Rc(λμ; a) represents reflection coefficients
Rc(λμσ1σ2; a).

In a similar way, combining (3.5), (3.6), (3.11)–(3.13), (3.16) and setting A1+
lm = 1,

A1−
lm = 2l + 1, q1+ = q1−∗ = i, we obtain v1±

lmσ defined in (2.2). We find S1 = I,

e1
lm0 = erYlm, e1

lm1 = rer × ∇Ylm, e1
lm2 = r∇Ylm, (3.23)
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where 1<l<∞, −l � m � l, and express f
1±
lmsσ in terms of the σ +1, s +1th element of

F1±
lm :

F1+
lm =

⎡
⎢⎢⎢⎢⎢⎣

lr l−1 0
lr l+1

2(2l +3)

0
irl

l +1
0

rl−1 0
(l +3)rl+1

2(l +1)(2l +3)

⎤
⎥⎥⎥⎥⎥⎦, F1−

lm =
1

2l +1

⎡
⎢⎢⎢⎢⎢⎣

(l +1)r−l

2(2l−1)
0 −(l +1)r−l−2

0
ir−l−1

l
0

−(l−2)r−l

2l(2l−1)
0 r−l−2

⎤
⎥⎥⎥⎥⎥⎦.

(3.24)
Then we construct

Rp(lm; a1) =
[
F1+

lm (a1)
]−1[

F1−
lm (a1)

]
, (3.25)

to represent reflection coefficients Rp(lmσ1σ2; a1) as the (σ1 + 1, σ2 + 1)th element of
Rp(lm; a1).

Once the basis solutions for cylindrical and spherical coordinates are derived, the
transformation coefficients as defined in (2.10) and (2.11) are determined. For a single
sphere inside a cylinder, the coordinates and origins are chosen in such a way that
the relative position is given by R = Rex . For such a configuration, we use Taylor
series expansion to calculate

Tr (lm2, λμ2) = ClmH (λ, μ; l, m), (3.26)

Tr (lm1, λμ2) = − im

λl
ClmH (λ, μ; l, m), (3.27)

Tr (lm0, λμ2) =
l(l − 1)(2l − 1) − (l2 − m2)(l − 2)

2λ2l(2l − 1)
ClmH (λ, μ; l, m)

− R

4λ2
Clm[H (λ, μ; l + 1, m − 1) − H (λ, μ; l + 1, m + 1)], (3.28)

where

H (λ, μ; l, m)=
2√
π

(iλ)l(im)I | m−μ | (λR), Clm =
1√

4(l − m)!(l + m)!(2l + 1)
. (3.29)

The derivation of these coefficients is presented in Appendix B. From the listed
coefficients in (3.26)–(3.28), one can evaluate all coefficients in Tf and Tr with the
help of (3.7)–(3.10), (3.18).

4. Numerical implementation
The main objective of our numerical simulation is to compute the hydrodynamic

force and torque on the particle inside the cylinder. We relate the external force
and torque on the particle to its linear and angular velocities by using generalized
friction tensors. The contribution of a pressure-driven parabolic flow impending from
infinity is also included in the formulation. Considering net force and torque on the
suspended inertialess body to be zero, one finds

Ft t · u + Ftr · ω + f p + f ex = 0, (4.1)

and

Frt · u + Frr · ω + τp + τ ex = 0. (4.2)

In (4.1) and (4.2), u and ω are the translational and rotational velocities. The viscous
force and torque on a fixed sphere in presence of a parabolic flow are given by f p
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Figure 2. The integrand in (4.5) for l = 1, m = 0, l′′ = 1, m′′ = 0 as a function of λ with
μ = 1(a) and μ = 2(b) when a =2a1 and R =0.5a1ex . The solid and dashed lines correspond to
σ =σ ′′ =0 and σ =σ ′′ =1.

and τp , and the external force and torque on the suspended body are f ex and τ ex .
The second-order tensors Ft t , Frr , Ftr and Frt are friction tensors with Ftr being the
transpose of Frt . In our analysis, we first evaluate Ft t , Frr , Ftr , Frt , f p and τp . Then
from (4.1) and (4.2) we also calculate u and ω for a freely moving particle where
f ex = 0 and τ ex = 0.

We find the aforementioned quantities by solving the linear system of equations in
(2.18) which relates c−

l′m′σ ′ to known dlmσ . One can invert these equations and gets

c−
l′m′σ ′ =

∑
lmσ

L(l′m′σ ′, lmσ )dlmσ . (4.3)

The coupling constants L(l′m′σ ′, lmσ ) correspond to the inverse of the relation in
(2.18) ∑

lmσ

L(l′m′σ ′, lmσ )M(lmσ, l′′m′′σ ′′) = δl′l′′δm′m′′δσ ′σ ′′, (4.4)

where

M(lmσ, l′′m′′σ ′′) = Rp(lmσσ ′′; a1)δll′′δmm′′

−
∑
σ1σ2

∞∑
μ=−∞

∫ ∞

−∞
Tr (lmσ, λμσ1)Rc(λμσ1σ2; a)Tf (λμσ2, l

′′m′′σ ′′) dλ. (4.5)

The integrands in (4.5) for any given l, m, σ , l′′, m′′, σ ′′ are fast decaying functions of
λ. A few of these integrands are plotted in figure 2 with varying λ. Also, the figure
suggests a fast convergence of the integrand values with increase in μ. We can observe
that the integrand is reduced by order of magnitudes when μ increases from 1 to 2.

Generally, L and M are referred as the grand friction and grand mobility matrices,
respectively. The components of Ft t , Frr , Ftr , Frt , f p , τp are related to various linear
combinations of L(l′m′σ ′, lmσ ). For example, the axial translational friction F tt

zz is
proportional to the element L(100, 100). Similarly, both radial (F tt

ρρ) and azimuthal
(F tt

ββ) frictions are determined from L(110, 110), L(1 −10, 1 −10), L(1 −10, 110), L(110,

1 −10).
So in our simulation, we first compute M by numerically integrating over λ and

summing over σ1, σ2 and μ. Then we invert the matrix representing M to calculate
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Figure 3. Computed values of diagonal elements of translational friction Ft t as functions of
interval δλ for numerical integral when a = 2a1. We plot radial component F tt

ρρ (solid lines),

azimuthal component F tt
ββ (dashed line) and axial component F tt

zz (dash-dot line) for moderate
separation between the surfaces of cylinder and sphere with R = 0.5a1 (a) as well as for nearly
touching configuration with R = 0.9a1 (b).

L. Finally, the relevant quantities are extracted from different linear combinations
of L(l′m′σ ′, lmσ ). However, there can be numerical errors because of inherent
approximations in the process. Firstly, the construction of M is inaccurate because of
the involved numerical summations and integrations. Secondly, an error is introduced
in the inversion of M because the infinite set of coefficients are truncated at some
finite value. In the next two subsections, we present representative convergence tests
to provide an estimate of these two types of error for a few critical elements.

4.1. Errors in construction of the grand mobility matrix

We identify three numerical approximations in the evaluation of M . First of all, the
interval length for the numerical integration in λ is denoted by δλ which is finite.
Then the numerical integration is truncated at a certain Λmax instead of ∞ so that the
integration on λ is from −Λmax to Λmax . Finally, the infinite summation over μ is
truncated so that in simulation it is actually from −μmax to μmax . Hence, we choose
the diagonal elements of Ft t as representative cases and study convergences on δλ,
Λmax and μmax . We select these particular elements because these are the most crucial
friction elements and at the same time are more prone to convergence problems.

In figure 3, the computed translational frictions are presented as a function of δλ. In
this study, two configurations are considered where the particle centre is either in the
middle of the cylinder surface and cylinder centre or very near to the cylinder surface.
In both cases, the cylinder radius a is twice of the sphere radius a1. We employed a
cubic integral scheme where we assign Λmax = 12.0. The other numerical parameter
μmax is assumed to be 12. The figure shows that the convergence of the curves to a
particular value is very fast. When the particle is away from the wall with R = 0.5a1

the convergence is relatively better. We check that the order of convergence for low
δλ is between 3 and 4.

Next, we focus on the convergence of the same quantities with respect to Λmax for
the same configurations. For these studies, we consider δλ = 0.1 and μmax = 12. These
results are presented in figure 4 from which one can conclude that the values converge
well at Λmax = 5.0. Again, we find that the convergence is better for R = 0.5a1.

In figure 5, we show how the values converge with μmax where δλ= 0.1 and Λmax =
12. It can be concluded that for μmax = 5, a reasonable convergence is achieved for
all configurations.
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Figure 4. Same as figure 3 except computed quantities are presented as functions of
integration limit Λmax instead of δλ for R = 0.5a1 (a) and R = 0.9a1 (b).
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Figure 5. Same as figure 3 except computed quantities are presented as functions of
summation limit μmax instead of δλ for R = 0.5a1 (a) and R = 0.9a1 (b).

We notice the common trend where the convergences are better for a particle
situated at an intermediate point like at R = 0.5a1 than for the particle very near
to the cylindrical wall. The reason behind such convergence characteristics is the
fact that when the particle is near the cylinder periphery we need more cylindrical
basis solutions (i.e. more Λmax and μmax) to describe the scattered flow-field from the
particle at the conduit surface. The number of required cylindrical basis is related to
the angle sustained by the particle at the axis of the cylinder – more solutions are
needed for a smaller angle. Hence further the particle is from the periphery, lower are
the necessary values for Λmax and μmax .

For all cases the simulation time for one configuration is of the order of a few
seconds. Moreover, due to the convergence properties, the scheme is even more efficient
for intermediate particle positions than for peripheral positions. This enhanced
efficiency for intermediate positions is an extra benefit for analysis of confined
particulate systems because in such configurations asymptotic methods do not work.

4.2. Approximation in solution of the linear systems of equation

Ideally, in the matrix M(l′m′σ ′, lmσ ), the integer indices l′ and l vary from 1 to ∞. In
practice, the infinite dimensional matrix M is truncated to a certain dimension and
then inverted to evaluate M approximately. Accordingly, we assign a maximum value
lmax for both l and l′, and construct the matrix L representing L(l′m′σ ′, lmσ ) with
the primed and unprimed indices corresponding to rows and columns, respectively.
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Figure 6. Computed values of diagonal elements of translational friction Ft t and rotational
friction Frr as functions of lmax representing the number of basis functions considered in the
simulation. The configurations and line types for radial, azimuthal and axial components are
same as figure 3.

Consequently for −l′ � m′ � l′, −l � m � l and σ, σ ′ = 0, 1, 2, one can determine the
dimension of the matrix to be q × q where q = 3lmax(lmax + 2).

The error in L due to truncation in the dimension of M is manifested by a
convergence test (known as spectral convergence) which demonstrates how the friction
coefficients saturate to a certain value with increasing lmax . We present these results
in figure 6 where we plot diagonal elements of Ft t and Frr as functions of lmax . We
consider a = 2a1 and two cases with R = 0.5a1 and R = 0.9a1.

The results show that all quantities converge well at lmax = 6 which is a very
small number. This is even true for usually critical cases where particle is very near
to the conduit surface. For a similar gap between surfaces of the particle and the
confinement, planar wall geometry requires lmax = 16 for reasonable convergence
(Bhattacharya et al. 2005a ,b). The reason behind this difference is simple. For a
sphere near a planar wall, the angular variation in geometry is more than a sphere
inside a cylinder. To resolve larger azimuthal variation around the sphere, a larger
lmax is necessary for convergence. As a result, cylindrical geometries exhibit relatively
better spectral convergence than planar-wall geometries. This is a major advantage
for our simulation which requires less than a minute to provide a reasonable result
with relative error less than 1 % for a particular configuration.

5. Hydrodynamic resistance in quiescent fluid inside a cylinder
We apply the simulation algorithm to comprehensively describe force and torque

on a sphere due to its motion in a quiescent fluid in terms of friction coefficients
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defined in (4.1) and (4.2). Because of the symmetries involved in the problem, one can
prove that both Ft t and Frr are diagonal matrices:

Ft t = F tt
ρρeρeρ + F tt

ββ eβ eβ + F tt
zzezez, Frr = F rr

ρρ eρeρ + F rr
ββ eβ eβ + F rr

zz ezez, (5.1)

where eρ , eβ , ez are unit vectors along radial, azimuthal and axial directions. In
contrast, the translation-rotation coupling tensors Ftr and Frt , have the following
forms:

Ftr = −Geβ ez − G′ezeβ, Frt = −G′eβ ez − Gezeβ, (5.2)

which show that Ftr and Frt are transpose of each other. Hence, it is possible to analyse
the dynamics of the particle in a stagnant fluid inside a cylinder, if one determines
eight friction coefficients: F tt

ρρ , F tt
ββ , F tt

zz , F rr
ρρ , F rr

ββ , F rr
zz , G, G′. We evaluate these scalar

quantities for various configurations defined by non-dimensional length parameters
R/(a − a1) and a/a1. We especially select those cases which are particularly difficult
to be investigated by available asymptotic methods. For tighter configurations, a
supplementary document present the values for all friction coefficients in tabular
form.

5.1. Force on a translating sphere

In figure 7, non-dimensional components of Ft t are presented where the quantities are
normalized by the Stokesian friction of the sphere in free-space,

F̄ tt
ii =

F tt
ii

6πa1η
, (5.3)

with i being either ρ or β or z. We plot F̄ tt
ρρ , F̄ tt

ββ , F̄ tt
zz as functions of normalized

distance R/(a − a1) of the centre of the sphere from the axis of the cylinder so that
the non-dimensional distance is always between 0 and 1. In the figures, the ratio a/a1

varies as a parameter for different curves.
If the sphere is enclosed more closely by the cylindrical surface, the friction

coefficients increase because of enhanced viscous interactions. This behaviour is
evident in figure 7 which shows higher values of friction for smaller a/a1.

Generally, when the particle is nearer to the conduit wall, hydrodynamic resistance
is more due to lubrication effects. This is why as R increases, the friction coefficients
usually increase in a monotonous way. This general trend can be seen for F̄ tt

ρρ and F̄ tt
ββ

consistently or for F̄ tt
zz when a/a1 � 1. The exception to this behaviour happens when

the particle is moving in axial direction, and the cylinder has small cross-section. In
such cases where the sphere is substantially blocking the channel, two phenomena
influence the motion of the particle. Firstly, during the axial motion, the particle acts
like a piston, and a pressure difference is generated across it in axial direction. This
difference in the pressure field hinders the particle. Secondly, if the sphere is very
near to the conduit surface, lubrication stresses due to relative motion between the
particle and the confinement also contribute in the hydrodynamic resistance. When
the particle is centrally placed the pressure difference is maximum. Any shift from this
position causes a release in pressure through the widened portion of the particle-wall
gap, and its effect diminishes. On the other hand, lubrication stresses are maximum
at the peripheral position. Hence, if a ∼ a1 we see a non-monotonous behaviour
where for increasing R, first F̄ tt

zz decreases due to reduced pressure difference and then
increases due to enhanced lubrication stresses.

For a centrally situated sphere inside the cylinder, rotational symmetry dictates
F̄ tt

ρρ = F̄ tt
ββ . Actually, for such axisymmetric configuration, all translational friction
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Figure 7. Normalized diagonal elements of the translational friction Ft t versus radial position
of the sphere-centre for a = 2a1 (solid line), a = 3a1 (dashed line), a = 4a1 (dash-dot line).

components F̄ tt
ρρ , F̄ tt

ββ , F̄ tt
zz have more or less similar values. However, when the particle

is placed in an off-centred position the radial component F̄ tt
ρρ varies differently than

F̄ tt
ββ and F̄ tt

zz . For radial motion, the sphere moves normally towards the bounding
surface and encounters a resistance which is inversely proportional to the gap between
the approaching surfaces. The explanation is well known – lubrication fields cause
a sharp increase in F̄ tt

ρρ for an increase in R when the particle is at the periphery
of the cylinder. Similar trend is evident for axial and azimuthal frictions also, but
the increase is relatively slower for F̄ tt

ββ and F̄ tt
zz than for F̄ tt

ρρ . For F̄ tt
ββ and F̄ tt

zz ,
the motion of the sphere is mainly tangential to the confining wall. Such motion
creates a weaker lubrication field that is responsible for the hydrodynamic friction
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varying logarithmically with inter-surface gap. The logarithmic variation is weaker
than inversely proportional increase. As a result, F̄ tt

ββ and F̄ tt
zz are smaller than F̄ tt

ρρ

when the particle is at the periphery of the cylinder.
Between F̄ tt

ββ and F̄ tt
zz , the latter is larger at the central position due to the developed

pressure difference in piston-like axial motion. The situation reverses in the peripheral
position because of lubrication fields. Lubrication effect is more prominent for
azimuthal motion compared to axial motion. This happens because azimuthal motion
is normally directed to some portion of the confinement and develops relatively
stronger resistance. In contrast, the axial motion is entirely directed in a tangential
direction to the vessel wall and causes weaker hydrodynamic friction.

5.2. Torque on a rotating sphere

The components of the rotational friction tensor Frr is normalized by the value
corresponding to a sphere in unbounded fluid

F̄ rr
ii =

F rr
ii

8πa3
1η

, (5.4)

where i is either ρ or β or z. In figure 8, the non-dimensional quantities F̄ rr
ρρ , F̄ rr

ββ , F̄ rr
zz

are presented as functions of R/(a − a1) for different a/a1.
All the normalized components of Frr monotonously increase with increasing

R/(a − a1) and decreasing a/a1 because such changes in R/(a − a1) and a/a1 enhance
viscous interactions due to closer proximity of the particle to the conduit surfaces. For
smaller gap between these two bodies, lubrication effect influences the hydrodynamic
behaviour. As rotation produces a predominantly tangential relative motion between
the touching surfaces, the resistance to the motion due to lubrication contribution
varies logarithmically with the inter-surface gap. Thus, we observe a slower increase
in F̄ rr

ρρ , F̄ rr
ββ , F̄ rr

zz with increasing R/(a − a1) compared to the behaviour of F̄ tt
ρρ which

varies inversely proportional to the gap.
The figures illustrate the relative strength of F̄ rr

ρρ , F̄ rr
ββ , F̄ rr

zz which agrees with intuitive

arguments. For the centrally placed particle, F̄ rr
ρρ = F̄ rr

ββ which is evident from figure 8.

However, as the particle approaches the periphery of the cylinder F̄ rr
ββ increases more

than F̄ rr
ρρ . The explanation is as follows: the velocity gradient due to relative velocity

between the sphere and the cylinder surface for azimuthal rotation than that for the
radial rotation. Consequently, the azimuthal rotation induces relatively more viscous
interactions and more resistance compared to rotation in the radial direction. On
the other hand, the gradients in velocity field due to relative velocity between the
particle and conduit surfaces are comparable for both axial and azimuthal rotations.
Accordingly, we find that F̄ rr

ββ and F̄ rr
zz have similar values for all R/(a − a1) and a/a1.

5.3. Translation-rotation coupling

When the sphere is not in the axisymmetric position, its rotation in a certain direction
induces hydrodynamic force whereas its translation may generate torque on the
suspended body. Symmetry dictates that only for radial translation and rotation
such couplings are not possible. More specifically, if the particle rotates in the
axial or azimuthal directions with its centre not on the conduit axis, it encounters
a force in the azimuthal or axial directions, respectively. Similarly, if the particle
translates in the axial or azimuthal directions, it experiences torque in the azimuthal
or axial directions, respectively. These couplings between translational and rotational
quantities are caused by the presence of the confinement and are quantified by the
coefficients G and G′ defined in (5.2).
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Figure 8. Same as figure 7 except normalized diagonal elements of the rotational friction Frr .

We non-dimensionalize G and G′ with a2
1η

Ḡ =
G

a2
1η

Ḡ′ =
G′

a2
1η

, (5.5)

and plot Ḡ and Ḡ′ for different R/(a − a1) and a/a1 in figure 9. As expected, with
R = 0 for the central position, Ḡ = Ḡ′ = 0 due to axisymmetric configuration. For
non-zero R, magnitudes of both coefficients generally increase with decrease in a/a1

because such variation in relative dimension creates enhanced viscous interactions
due to closer proximity between the particle and conduit. However, the behaviour of
Ḡ and Ḡ′ with respect to R/(a − a1) is not monotonous – we can see a reversal in
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Figure 9. Normalized non-zero components of Ftr or Frt as functions of non-dimensional
position of the centre of the sphere. Interpretation of the line types are same as in figure 7.

trend and values for both cases. In the subsequent discussion, we intuitively explain
this non-monotonic characteristic for both Ḡ and Ḡ′.

According to (5.2), G is the coefficient which relates either axial rotation with
azimuthal force or azimuthal translation with axial torque. The behaviour of this
coupling constant with increasing R/(a − a1) can be equivalently explained by
considering either of these relations. When the particle rotates in the axial direction,
two phenomena influence the hydrodynamic interactions. Firstly, in order to maintain
a consistent volumetric flow in the gap between the surfaces of the sphere and the
cylinder, the pressure field contains an angular variation that creates a net force in
the azimuthal direction. Secondly, for a peripheral position of the particle inside the
conduit, lubrication stresses due to the relative motion between the adjacent surfaces
contribute in azimuthal force. These two effects are mutually opposing. Similar
azimuthal pressure variation and lubrication effect can be observed for translating
particles in the azimuthal direction where again both of these factors tend to cancel
each other. The relative influence of the first contribution is stronger than that
of the second when the sphere is near the cylinder centre and far away from the
periphery. The relative effect of lubrication fields, however, increases when the particle
approaches the wall. As a result, the trend in the variation of G with increasing R first
reverses and the value starts to decay with R after reaching an extremum value. Then
the value itself may change sign because of very strong lubrication. This reversal in
trend is more prominent for moderate a/a1 because in that case the pressure variation
and the lubrication effect have equal contribution to create a noticeable difference.
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The other coefficient G′ exhibits a similar pattern of variation with increasing R. It
couples either axial translation with azimuthal torque or azimuthal rotation with axial
force. As in the case of G, here also spatial variation in pressure field plays a key role
along with the near-contact lubrication effect. Only difference is that the variation
in pressure field is along the axial direction instead of the angular direction. Again
like before, these two effects are subtractive to each other, and near the axisymmetric
configuration (R → 0) the relative strength of the pressure differential is predominant
over the lubrication effect. The situation reverses for peripheral position (R → a −a1).
As a result, a change in trend after reaching an extremum value and ultimately a
reversal in the sign of G′ can be observed with increasing R.

5.4. Validation by comparing with the analytical results for limiting cases

We compare a few representative results from our simulation with the values obtained
by using various perturbation analyses for different limiting cases. We already know
that our computation agrees well with physically intuitive arguments. We also know
that the convergence tests with respect to various computational parameters show
a high convergence rate for the algorithm. Moreover, there are a couple of other
consistency checks from theoretical point of view. Firstly, the integrand in (2.18)
has singular components which are non-integrable over the wavenumber λ, and
cancel each other to give an integrable function only if the analytical derivations
are correct. Hence, any error in the derivation is ruthlessly exposed by the non-
converging integral. Secondly, the matrix L in (4.3) should be a positive definite
matrix if calculated properly. We confirm that our formulation satisfies both these
consistency conditions. All these tests are, however, necessary checks – they are not
sufficient to prove absolute accuracy of our solution. For this purpose, we need some
quantitative verification of the numerical study by comparing it with some known
exact results.

For quantitative validation, we consider the available theoretical results for axial
motion of the sphere in limiting configurations. First, we calculate the translational
friction in the axial direction according to the lubrication theory for a closely fitted
sphere in the cylinder (Bungay & Brenner 1973b). We assume the particle to be in
axisymmetric position and compare our simulation with the theoretical values when
a ∼ a1. Then, we use the reflection method in axisymmetric configuration and test how
our computation matches with it for a � a1. The comparison is presented in figure 10
where one can see that our results match perfectly with both theoretical curves in
respective regimes. The computation agrees very well with (Bungay & Brenner 1973b)
when a ∼ a1, but then starts to diverge as a increases. The trend is reverse with the
reflection method which differs by less than 1 % with the simulated values for a > 5a1

and deviates when a ∼ a1.
In figure 11, we account for an eccentric position of the sphere with respect to

the cylinder where R = 2a1. For such R, one cannot expect the lubrication theory
to give correct results for tightly fitted sphere. Hence, for eccentric configuration,
we compare our result only with reflection method. Unlike the axisymmetric case,
here we can compute non-zero G′ along with F tt

zz . We present both coefficients for a
comparative study and find reasonable accuracy (within 1 %) between our approach
and reflection method when a > 5R. Two solutions diverge for lower values of a. For
G′, this difference is more dramatic where the reversal in the magnitude is evident
in the simulated data as a → (R + a1). This reversal is due to the lubrication effect
which reflection method cannot capture.
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Figure 10. Computed values of axial friction for translation (solid line) in axisymmetric
configuration are compared with reflection method (dashed line) for a � a1 and singular
perturbation method (dotted line) for a ∼ a1.
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Figure 11. Computed values of friction coefficients (solid line) for off-centred position
R = 2a1 are compared with reflection method (dashed line) for a � a1, R.

In table 1, we verify our results with the same obtained by using lubrication theory
for tight configuration. We compute both F tt

zz and G′ for different R. The difference
in two sets of values is within the error margin for lubrication theory.

Though we check the simulated values of only the axial frictions with existing
results, this quantitative comparison is sufficient to give us confidence in the
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F̄ tt
zz F̄ tt

zz Ḡ′ Ḡ′

R/(a − a1) Lubrication Simulation Lubrication Simulation

0.0 612 617 0 0
0.2 592 598 –128 –128
0.4 541 545 –239 –236
0.6 463 467 –303 –304
0.8 401 401 –350 –345
0.99 338 338 –354 –346

Table 1. A comparison between our simulation and the lubrication theory for a tight
configuration with a/a1 = 1.1. We use both approaches to obtain the normalized axial friction
F̄ tt

zz and coupling coefficient Ḡ′ for different radial position of the particle. The lubrication

results are good approximations with relative error ∼1 % for F̄ tt
zz and ∼3 % for Ḡ′. The

difference in two sets of results corresponds to the error limits indicating the validity of the
formulation.

correctness of the entire analysis. In our method, the computation of the friction
coefficients is interrelated because these are dependent on elements of the grand
friction matrix L which is constructed by inverting the computed grand mobility M .
Hence, correct evaluation of one set of coefficients implies the correctness of the other
components of the friction tensors.

6. Particle motion in parabolic pressure-driven flow
Our final analysis involves the study of particle dynamics in a pressure-driven

axial flow for which the variation in velocity profile is parabolic along the radial
direction so that the velocity is maximum at the axis of symmetry and zero at the
conduit surface. We address two problems here. Firstly, we consider a fixed sphere
encountering the impending flow and calculate the force and torque on it. Then we
determine the motion of the particle assuming that it is free to move under zero force
and zero torque.

6.1. Force and torque on a fixed particle in parabolic velocity field

From symmetry arguments, one concludes that the force f p and the torque τp in
(4.1) and (4.2) can only have components in the z and β directions, respectively:

f p = f p
z ez, τp = τ

p
β eβ. (6.1)

We normalize f p
z and τ

p
β

f̄ p
z =

f p
z

6πa1ηup

τ̄
p
β =

τ
p
β

8πa2
1ηup

, (6.2)

where up is the velocity at the cylinder axis due to the parabolic flow. In figure 12, we
plot the non-dimensional quantities f̄ p

z and τ̄
p
β as functions of R/(a −a1) for different

a/a1.
The results show that f̄ p

z and τ̄
p
β consistently decrease with increasing a/a1 because

a smaller value of a ensures enhanced viscous interactions due to closer proximity
between the particle and the conduit. For R = 0 at the axisymmetric configuration, τ̄

p
β

is always zero for any dimension of the cylinder or the sphere. Also, for axisymmetric
position of the particle, f̄ p

z → 1 when a/a1 → ∞. Both these characteristics are
noticeable in figure 12.
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Figure 12. Normalized force and torque on a fixed sphere in parabolic flow as functions of
its normalized radial position. The interpretation of the line types are same as in figure 7.

As R/(a − a1) increases, f̄ p
z decreases for any a/a1. The magnitude of the force

on the fixed particle is dependent on the magnitude of the local velocity due to the
impending parabolic flow. The impending flow decreases with R due to the parabolic
nature. As a result, the force is maximum in the axisymmetric position and decays as
the particle approaches the cylinder periphery.

The trend of τ̄
p
β with increasing R/(a − a1) is reverse. The torque is approximately

proportional to the local shear rate which is zero at R = 0 and increases with R. As
a result, when the particle moves away from the axis of the cylinder, τ̄

p
β increases.

6.2. Motion of a free particle in Poiseuille flow

A free particle is free of inertia and external force so that the net viscous force and
torque on it are zero. Hence, the motion of such particle can be determined by fixing
f ex = f = 0 and τ = τ ex = 0. Accordingly, we solve (4.1) and (4.2) simultaneously
to find u and ω. Symmetry dictates

u = uzez, ω = ωβ eβ. (6.3)

In figure 13, we present normalized uz and ωβ as functions of R/(a − a1) for different
a/a1.

For large values of a/a1, a free particle follows the fluid with a speed same as the
local velocity of the impending field. As a result, it can be treated as a tracer particle,
and the uz versus R curve represents the parabolic velocity profile across the channel.
We can observe this in figure 13. When the sphere is near the surface of the cylinder,
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Figure 13. The linear and angular velocities of a free particle in pressure-driven parabolic
flow as functions of its normalized radial position. The interpretation of the line types are
same as in figure 7.

the curves depart from the parabolic function due to the effect of the reflected flow
from the confinement. This departure is especially pronounced for narrow cylinders.

The rotational velocity of the sphere is proportional to the local shear of the
impending flow. Accordingly, ωβ = 0 at R = 0 as the shear is zero on the axis of
the cylinder. The angular velocity increases linearly with R following the behaviour
of the local shear for different radial positions. This characteristics is consistently
manifested in figure 13. Exception happens only when the particle is very close to
the wall. Then the angular velocity starts to decay with R because of the lubrication
effect.

7. Summary and concluding remarks
In this paper, we outline a general mathematical procedure (basis transformation

method) that can be used to develop fast algorithms to address fluid-mechanical
problems involving suspended particles inside conduits. The method enables us to
construct general reflection relations for the satisfaction of vector boundary conditions
at disconnected simple surfaces. We specifically concentrate on solving Stokesian
dynamics of a sphere in a cylinder. Unlike past analytical studies, the present method
is applicable to all possible particle-conduit configurations, i.e. any dimension and
particle position can be considered to define the system. The generality of our
approach also allows us to describe not only the axial motion of the particle but also
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all possible translations and rotations including those in the radial and azimuthal
directions. To our knowledge, our results represent first such comprehensive study of
the general motion of a spherical particle inside a cylindrical vessel.

The numerical scheme is extremely efficient because of the high convergence rates.
According to our experience, we obtain reasonable results within 1 % accuracy using
less than a minute of computational time in a 2 GHz machine. The relative errors in
the simulation are found to be less than 1 % when the numerical results are compared
with analytical values obtained from both lubrication theory and reflection method.

We present a few representative results for different relative dimensions of the sphere
and the cylinder as well as for different radial positions of the particle. We especially
choose the configurations where all three defining dimensions are comparable to each
other because available asymptotic methods are not applicable in those cases. We
consider the particle to be either undergoing a specified motion in quiescent fluid
or encountering an impending pressure-driven parabolic flow. By definition, the first
problem is a friction problem where hydrodynamic force and torque on the sphere are
evaluated for a prescribed motion in stagnant fluid. For the second situation, however,
one can furnish both friction and mobility descriptions. Accordingly, we evaluate the
force and torque on a fixed particle in a parabolic flow (friction formulation) as well
as determine the motion of a force-free torque-free particle in the same impending
field (mobility formulation). The simulation results coincide properly with intuitive
physical arguments.

We validate our simulation data in several ways. First of all, the convergence
tests can be treated as necessary verification which, though cannot quantify absolute
accuracy, can at least check consistency. Then there are two independent validations
from the theoretical point of view. Integrability of the integrand in (2.18) is only
ensured if the analytical derivations are correct. Secondly, the matrix L in (4.3) should
be positive definite which we confirm. Apart from these tests, we also compare our
results with different asymptotic methods for limiting cases. The agreements between
the two sets of results are satisfactory.

Though the primary focus of this article is on solving Stokesian fields around a
sphere inside a cylinder where the velocity is specified at the solid–fluid interfaces,
the outlined basis transformation method has a far more general applicability. As
this method does not require symmetry constraints like recently proposed Cartesian
representation method (Bhattacharya et al. 2005a ,b), the presented formulation can
be used in various situations. Hence, it can be applied to solve different second-order
vector differential equations with linear boundary conditions specified at different
disconnected simple surfaces. The only restriction on the governing equation and
the geometries is that the basis solutions of the linear differential equation for the
involved coordinate systems have to be in separable form as given by (2.1) and
(2.2). Fortunately, for a wide range of fluid-mechanical problems, the separable basis
solutions can be constructed.

In the future, we intend to explore all these possibilities. Most immediate
generalization will be to extend this method to many-sphere system in a cylindrical
conduit. There we need to modify the analysis by considering a number of spherical
coordinates with origin at the centre of each particle and using the well-known
transformation relations between spherical Stokesian solutions (Felderhof & Jones
1989). Furthermore, simple changes in the reflection relations would allow us to
consider many body interactions in annular geometries. Finally, we can also apply
basis transformation method to vector equations other than steady Stokes equation
and to boundary conditions other than Dirichlet conditions. As a result, the problems
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involving periodically oscillating fields (unsteady Stokes equation) or stress-free
interfaces (Neumann condition) or surfactant covered surfaces (mixed boundary
conditions) can also be addressed.

This work has been supported by ACS Petroleum Research Foundation grant
PRF#49053-DN19.

Appendix A. Expansion of Oseen tensor
In this appendix, we prove (3.16) and show how this equation can be used as

an additional constraint to determine unique expressions for gauge-field dependent
Stokesian basis functions by fixing the gauge fields. In the derivation, the focus will be
only on the first part of (3.16) describing the expansion of Oseen tensor in cylindrical
basis as the second part involving the spherical basis can be implied by considering
similar steps.

A.1. General expansion of a tensorial solution of Stokes equation

As b ·T(r − r ′) is a solution of Stokes equation in both r and r ′ space for any constant
vector b, one can expand T in terms of Stokesian basis functions:

T(r − r ′) =
∑
λμσ

∑
λ′μ′σ ′

Cσσ ′

λμλ′μ′v
+
λμσ (r)v−

λ′μ′σ ′(r ′) when α < α′, (A 1)

and

T(r − r ′) =
∑
λμσ

∑
λ′μ′σ ′

Cσσ ′

λμλ′μ′v
−
λμσ (r)v+

λ′μ′σ ′(r ′) when α > α′. (A 2)

At α = α′, both expressions of T should be the same implying Cσσ ′
λμλ′μ′ = Cσ ′σ

λ′μ′λμ.
Considering the Stokesian basis in separable form according to (2.1) with S being

the identity tensor, one can transform (A 1) and (A 2) for α < α′ and α > α′,
respectively:

T(r − r ′) =
∑
λμσs

∑
λ′μ′σ ′s′

Cσσ ′

λμλ′μ′f
+
λμsσ (α)f −

λ′μ′s′σ ′(α′)eλμs(β, γ )eλ′μ′s′(β ′, γ ′) (A 3)

and

T(r − r ′) =
∑
λμσs

∑
λ′μ′σ ′s′

Cσσ ′

λμλ′μ′f
−
λμsσ (α)f +

λ′μ′s′σ ′(α
′)eλμs(β, γ )eλ′μ′s′(β ′, γ ′). (A 4)

We use (A 3) and (A 4) along with a few special properties of the Oseen tensor to
simplify the coefficients Cσσ ′

λμλ′μ′ . These properties are described next.

A.2. Expansion of Dirac delta function

In order to simplify Cσσ ′
λμλ′μ′ , we first consider the Oseen tensor as a Greens function

for Stokes equation so that

∇2T(r − r ′) − ∇∇Gr = Iδ(r − r ′). (A 5)

Here, Gr is Greens function of Laplace equation as defined by (3.14) , I is the identity
tensor, and δ(r − r ′) is the Dirac delta function.

In the next step, we expand each term in (A 5) using the outer product of eλμs(β, γ )
and eλ′μ′s′(β ′, γ ′). We take into account

Iδ(r − r ′) = | ∇α || ∇β || ∇γ | δ(α − α′)δ(β − β ′)δ(γ − γ ′)I (A 6)
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and

δ(β − β ′)δ(γ − γ ′)I =
∑
λμs

∑
λ′μ′s′

δλλ′δμμ′δss′ eλμs(β, γ )eλ′μ′s′(β ′, γ ′) (A 7)

to conclude

Iδ(r − r ′) = | ∇α||∇β||∇γ | δ(α − α′)
∑
λμs

∑
λ′μ′s′

δλλ′δμμ′δss′ eλμs(β, γ )eλ′μ′s′(β ′, γ ′). (A 8)

Moreover, from (3.11) and (3.14), we respectively find for α < α′ and α > α′

−∇∇Gr =
∑
λμ

v+∗
λμ0(r)v−

λμ2(r)dλ

=
∑
λμs

∑
λ′μ′s′

δλλ′δμμ′f +∗
λμs0(α)f −

λ′μ′s2(α
′)eλμs(β, γ )eλ′μ′s′(β ′, γ ′) (A 9)

and

−∇∇Gr =
∑
λμ

v−∗
λμ2(r)v+

λμ0(r)dλ

=
∑
λμs

∑
λ′μ′s′

δλλ′δμμ′f −∗
λμs2(α)f +

λ′μ′s′0(α
′)eλμs(β, γ )eλ′μ′s′(β ′, γ ′). (A 10)

Also, noting that the separable form of the Stokesian basis solution is associated with
a second-order Strum–Liouville operator, we identify that

∇2T(r−r ′) = | ∇α||∇β||∇γ |
∑
λμσs

∑
λ′μ′σ ′s′

Cσσ ′

λμλ′μ′ L̂α
λμ(f ±

λμsσ )f ∓
λ′μ′s′σ ′(α

′)eλμs(β, γ )eλ′μ′s′(β ′, γ ′),

(A 11)
where Strum–Liouvile operator L̂α

λμ is defined as

L̂α
λμ = S(α)

[
d

dα

(
p(α)

d

dα

)
+ qλμ(α)

]
, (A 12)

and both cases for α < α′ and α > α′ are respectively accounted for by reversing the
appearance of the superscripts + and − as indicated in (A 3) and (A 4).

After substituting (A 8)–(A 11) in (A 5), we multiply the resulting equation by
| ∇α||∇β||∇γ | and integrate it over an infinitely small interval of α around α = α′.
From the discontinuity at α = α′, we find∑

λμsσ

∑
λ′μ′s′σ ′

Cσσ ′

λμλ′μ′W (λμsσ, λ′μ′s ′σ ′ | α′)eλμs(β, γ )eλ′μ′s′(β ′, γ ′)

=
∑
λμs

∑
λ′μ′s′

δλλ′δμμ′δss′ eλμs(β, γ )eλ′μ′s′(β ′, γ ′), (A 13)

where, W (λμsσ, λ′μ′s ′σ ′ | α′) represents a generalized Wronskian

W (λμsσ, λ′μ′s ′σ ′ | α′) = S(α′)p(α′)

(
f +
λ′μ′s′σ ′

df −
λμsσ

dα′ − f −
λ′μ′s′σ ′

df +
λμsσ

dα′

)
. (A 14)

Hence, comparing between two sides of (A 13), we have∑
σσ ′

Cσσ ′

λμλ′μ′W (λμsσ, λ′μ′s ′σ ′ | α′) = δλλ′δμμ′δss′ . (A 15)
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Accordingly, we conclude that

Cσσ ′

λμλ′μ′ = δλλ′δμμ′Cσσ ′, (A 16)

which also ensures the disappearance of the α′-dependence on the left-hand side of
(A 15) due to the special property of Wronskian.

A.3. Construction of properly normalized stokesian basis

The immediate implication of (A 16) is the simplification of (A 1) and (A 2):

T(r − r ′) =
∑
σσ ′

Cσσ ′v+
λμσ (r)v−

λμσ ′(r′) when α < α′ (A 17)

and

T(r − r ′) =
∑
σσ ′

Cσσ ′v−
λμσ (r)v+

λμσ ′(r
′) when α > α′. (A 18)

However, further simplification of the expansion is possible by using the recurring
Curl relation which relates Stokesian solutions with different σ s.

We recognize the tensor ∇∇′Gr (with ∇′ being the gradient in r ′ space) as

∇∇′Gr =

∫ ∞

−∞

∞∑
μ=−∞

v+∗
λμ0(r

′)v−
λμ2(r) dλ, (A 19)

and relate it to T in three equivalent ways

∇ × ∇ × T = −∇∇′Gr ∇′ × ∇′ × T = −∇∇′Gr ∇ × ∇′ × T = ∇∇′Gr . (A 20)

When (A 17) and (A 18) are substituted in (A 20), and recurring curl relations as
described by (3.3) and (3.4) are used with q+∗ = q− = q+∗

1 = q−
1 = i, one can find the

following relations:

C00 = C11 = C22 = 1, C01 = C02 = C12 = 0, C10 = C21 = k1, C20 = k2. (A 21)

Here k1 and k2 are two arbitrary constants whose values cannot be predicted without
a detailed knowledge of the pressure solution. This non-uniqueness stems from the
gauge invariant property of the pressure solution.

At this point let us assume that the transformation relations are obtained with
specific values of k1 and k2 for a certain Stokesian pressure solution v−

λμ0 and v+
λμ2 which

satisfy the recurring curl relations in (3.3) and (3.4) respectively. Then we can conceive
of the following gauge transformation where new basis functions corresponding to
pressure solutions are constructed using the old basis functions:

v−
λμ0 +

k1

2
v−
λμ1 +

k2 − k2
1/4

2
v−
λμ2 → v−

λμ0, v+
λμ2 +

k1

2
v+
λμ1 +

k2 − k2
1/4

2
v+
λμ0 → v+

λμ2.

(A 22)

and other solutions are obtained by taking successive curl of the new pressure basis.
Then, substituting the old basis functions with the new ones in (A 17) and (A 18),
one can prove (3.16). In the process, the particular gauge transformation relations in
(A 21) render the uniqueness of the Stokesian basis solutions.

Appendix B. Derivation of the transformation coefficients
In this appendix, we derive the expressions for transformation coefficients

Tr (R | lm0, λμ2), Tr (R | lm1, λμ2), Tr (R | lm2, λμ2) given in (3.26)–(3.29). According
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to our analysis, if these constants are known, we can find all other elements in Tr and
Tf by using (3.7)–(3.10), (3.18).

B.1. Transformation relation between two sets of scalar harmonics

Because of our choice of q+ = q+
1 (both are i), (3.9) ensures

Tr (R | lm2 | λμ2) = Tr (R | lm0 | λμ0). (B 1)

Then, according to (3.10), one can write

v+
λμ0 =

∑
lm

v1+
lm0 Tr (R | lm0, λμ0) =

∑
lm

v1+
lm0 Tr (R | lm2, λμ2), (B 2)

which implies that the potential solution of Stokes equation cannot have any coupling
with vorticity and pressure solutions. Considering (3.11), we conclude

Φ+
λμ =

∑
lm

Φ1+
lm Tr (R | lm0, λμ0). (B 3)

In our analysis, Tr (R | lm2 | λμ2) is obtained by relating the scalar harmonic functions
Φ+

λμ and Φ1+
lm defined in (3.12).

By using properties of the modified Bessel function Iμ(λρ), Φ+
λμ can be expanded as

Φ+
λμ =

1

4π2

∫ 2π

0

exp[λρ cos(β − ψ) + iμψ + iλz] dψ. (B 4)

If cylinder centre and sphere centre are separated by R = Rex , then from the geometry
one finds

ρ cos(β − ψ) = r sin(θ) cos(φ − ψ) + R cos(ψ), z = r cos(θ). (B 5)

Substituting (B 5) in (B 4), we get

Φ+
λμ =

1

4π2

∫ 2π

0

exp[λr sin(θ) cos(φ − ψ) + iλr cos(θ) + λR cos(ψ) + iμψ] dψ. (B 6)

On the other hand, Taylor series expansion shows

exp[λr sin(θ) cos(φ − ψ) + iλr cos(θ)] =

∞∑
l=1

l∑
m=−l

4
√

πClm(iλ)l(im)e−imψΦ1+
lm , (B 7)

where Clm is defined in (3.29). Hence substituting (B 7) in (B 6) and using properties
of modified Bessel function Iμ(λρ), the following expression can be obtained

Φ+
λμ =

∞∑
l=1

l∑
m=−l

M(λ, μ; l, m)ClmΦ1+
lm , (B 8)

where M(λ, μ; l, m) is given in (3.29). So finally we prove

Tr (lm0, λμ0) = Tr (lm2, λμ2) = M(λ, μ; l, m)Clm (B 9)

by comparing (B 3) and (B 8). The expression in (B 9) is same as the one given in
(3.26).

B.2. Expansion of cylindrical pressure solution

In order to find the other two independent transformation coefficients (Tr (R | lm0, λμ2)
and Tr (R | lm1, λμ2)), we express v+

λμ2 in terms of the potential solution. We construct
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a linear tensorial operator Lλ which relates v+
λμ2 in terms of v+

λμ0

v+
λμ2 = Lλ · v+

λμ0, (B 10)

where

Lλ =
1

2λ2

(
ρ

∂

∂ρ
I + ezez

)
. (B 11)

It is to be noted that (B 10) is a reverse relation for the recurrence Curl structure in
(3.4). In (3.4), v+

λμ0 can be determined if v+
λμ2 is given whereas in (B 10) the reverse is

true. We often refer to operators like Lλ as reverse curl operators for the particular
basis vectors.

As the operator Lλ is linear, it can operate on the expansion in (B 2) so that

v+
λμ2 = Lλ · v+

λμ0 =
∑
lm

uλ1+
lm Tr (R | lm2, λμ2), (B 12)

where

uλ1+
lm = Lλ · v1+

lm0. (B 13)

We express uλ1+
lm in terms of spherical basis solutions by using the following identity

which is derived in our analysis

uλ1+
lm = almλv

1+
l−2m0 + blmλv

1+
l−1m1 + clmλv

1+
lm2 + c+

lmλv
1+
l−1m+10 − c−

lmλv
1+
l−1m−10. (B 14)

Hence after replacing Tr (R | lm2, λμ2) in (B 12) according to (B 9), v+
λμ2 can be

expanded as

v+
λμ2 =

∑
lm

M(λ, μ; l, m)Clm

(
almλv

1+
l−2m0+blmλv

1+
l−1m1+clmλv

1+
lm2+c+

lmλv
1+
l−1m+10−c−

lmλv
1+
l−1m−10

)
.

(B 15)
Here the constants almλ, blmλ, clmλ, c+

lmλ, c−
lmλ are

almλ = −
√

(l − m)(l − m − 1)(l + m)(l + m − 1)

λ2
, (B 16)

blmλ = −m
√

(l − m)(l + m)

λ2
, (B 17)

clmλ =
l(l − 1)(2l − 1) − (l2 − m2)(l − 2)

2l(2l − 1)λ2
, (B 18)

c+
lmλ =

R
√

(2l + 1)(l − m − 1)(l − m)

4λ2
√

(2l − 1)
, (B 19)

c−
lmλ = −R

√
(2l + 1)(l + m − 1)(l + m)

4λ2
√

(2l − 1)
. (B 20)

Substituting (B 16)–(B 20) in (B 15), all independent transformation coefficients can
be evaluated.

The final forms can be significantly simplified if one considers the following identities
involving the constants almλ, blmλ, clmλ, c+

lmλ, c−
lmλ:

almλM(λ, μ; l, m)Clm = M(λ, μ; l − 2, m)Cl−2m, (B 21)

blmλM(λ, μ; l, m)Clm = − im

λl
M(λ, μ; l − 1, m)Cl−1m, (B 22)
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clmλM(λ, μ; l, m)Clm =
l(l − 1)(2l − 1) − (l2 − m2)(l − 2)

2l(2l − 1)λ2
M(λ, μ; l, m)Clm, (B 23)

c+
lmλM(λ, μ; l, m)Clm =

R

4λ2
M(λ, μ; l, m)Cl−1m+1, (B 24)

c−
lmλM(λ, μ; l, m)Clm =

R

4λ2
M(λ, μ; l, m)Cl−1m−1. (B 25)

Then substituting the identities given by (B 21)–(B 25) in (B 15) and changing relevant
orders of the summation we find

v+
λμ2 =

∑
lm

clmM(λ, μ; l, m)

(
v1+

lm2 − im

λl
v1+

lm1 +
l(l − 1)(2l − 1) − (l2 − m2)(l − 2)

2l(2l − 1)λ2
v1+

lm0

)

+
∑
lm

clm(M(λ, μ; l + 1, m − 1) − M(λ, μ; l + 1, m + 1))v1+
lm0. (B 26)

However, we also know that

v+
λμ2 =

∑
lmσ

v1+
lmσ Tr (R | lmσ, λμ2). (B 27)

Hence comparing (B 26) and (B 27) we determine Tr (R | lm1, λμ2) and
Tr (R | lm0, λμ2). The expressions are identical to (3.27) and (3.28), respectively.
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